Zhaozhuo Xu (zxu79)

Zhaozhuo Xu

Assistant Professor

Charles V. Schaefer, Jr. School of Engineering and Science

Department of Computer Science

Education

  • PhD (2023) Rice University (Computer Science)

Research

Machine learning, randomized algorithms

General Information

Zhaozhuo Xu joined Stevens Institute of Technology in 2024 as an Assistant Professor of Computer Science. He earned his Ph.D. from Rice University and was recognized with the AAAI 2025 New Faculty Highlights.

Institutional Service

  • Faculty search committee Member

Professional Service

  • The International Conference on Machine Learning (ICML) Area Chair
  • International Conference on Learning Representations (ICLR) Area Chair
  • The 2024 Conference on Empirical Methods in Natural Language Processing (EMNLP) System Demonstrations Area Chair
  • International Conference on Computational Linguistics (COLING) Area Chair
  • ACL Rolling Review (ARR) Area Chair
  • Conference on Neural Information Processing Systems (NeurIPS) Area Chair
  • The 2024 Conference on Empirical Methods in Natural Language Processing (EMNLP) Area Chair

Professional Societies

  • IEEE – Institute of Electrical and Electronics Engineers Member
  • AAAI – Association for the Advancement of Artificial Intelligence Member

Selected Publications

Conference Proceeding

  1. Pan, Y.; Lin, H.; Ran, Y.; Chen, J.; Yu, X.; Zhao, W.; Zhang, D.; Xu, Z.; Chiruzzo, L.; Ritter, A.; Wang, L. (2025). ALinFiK: Learning to Approximate Linearized Future Influence Kernel for Scalable Third-Parity LLM Data Valuation. Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL 2025 - Volume 1: Long Papers, Albuquerque, New Mexico, USA, April 29 - May 4, 2025 (pp. 11756--11771). Association for Computational Linguistics.
    https://doi.org/10.18653/v1/2025.naacl-long.589.
  2. Xu, Z.; Walsh, T.; Shah, J.; Kolter, Z. (2025). Compression-Aware Computing for Scalable and Sustainable AI. AAAI-25, Sponsored by the Association for the Advancement of Artificial Intelligence, February 25 - March 4, 2025, Philadelphia, PA, USA (pp. 28733). AAAI Press.
    https://doi.org/10.1609/aaai.v39i27.35126.
  3. Pan, Y.; Chen, J.; Chen, J.; Xu, Z.; Zhang, D. (2025). Iterative Online-Offline Joint Optimization is Needed to Manage Complex LLM Copyright Risks. ICML 2025 International Conference on Machine Learning. ICML 2025 International Conference on Machine Learning.
  4. Zhang, D.; Xu, Z.; Zhao, W. (2025). LLMs and Copyright Risks: Benchmarks and Mitigation Approaches. NAACL Proceedings of the 2025 Annual Conference of NAACL: Human Language Technologies (Volume 5: Tutorial) (pp. 44--50).
  5. Wang, Z.; Xu, Z.; Xi, J.; Wang, Y.; Shrivastava, A.; Ng, T. S.; Zhou, L.; Zhou, Y. (2025). ZEN: Empowering Distributed Training with Sparsity-driven Data Synchronization. 19th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2025, Boston, MA, USA, July 7-9, 2025 (pp. 537--556). USENIX Association.
    https://www.usenix.org/conference/osdi25/presentation/wang-zhuang.
  6. Guo, W.; Long, J.; Zeng, Y.; Liu, Z.; Yang, X.; Ran, Y.; Gardner, J. R.; Bastani, O.; De Sa, C.; Yu, X.; Chen, B.; Xu, Z. (2025). Zeroth-Order Fine-Tuning of LLMs with Transferable Static Sparsity. The Thirteenth International Conference on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025. OpenReview.net.
    https://openreview.net/forum?id=myYzr50xBh.
  7. Xu, J.; Li, S.; Xu, Z.; Zhang, D. (2024). Do LLMs Know to Respect Copyright Notice?. EMNLP 2024 (Main).
  8. Yu, Y.; Yao, Z.; Li, H.; Deng, Z.; Jiang, Y.; Cao, Y.; Chen, Z.; Suchow, J.; Cui, Z.; Liu, R.; Xu, Z.; Zhang, D.; Subbalakshmi, K.; Xiong, G.; He, Y.; Huang, J.; Li, D.; Xie, Q.; Globersons, A.; Mackey, L.; Belgrave, D.; Fan, A.; Paquet, U.; Tomczak, J. M.; Zhang, C. (2024). FinCon: A Synthesized LLM Multi-Agent System with Conceptual Verbal Reinforcement for Enhanced Financial Decision Making. Advances in Neural Information Processing Systems 38: Annual Conference on Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15, 2024.
    http://papers.nips.cc/paper/_files/paper/2024/hash/f7ae4fe91d96f50abc2211f09b6a7e49-Abstract-Conference.html.
  9. Zhang, T.; Yi, J.; Xu, Z.; Shrivastava, A.; Globersons, A.; Mackey, L.; Belgrave, D.; Fan, A.; Paquet, U.; Tomczak, J. M.; Zhang, C. (2024). KV Cache is 1 Bit Per Channel: Efficient Large Language Model Inference with Coupled Quantization. Advances in Neural Information Processing Systems 38: Annual Conference on Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15, 2024.
    http://papers.nips.cc/paper/_files/paper/2024/hash/05d6b5b6901fb57d2c287e1d3ce6d63c-Abstract-Conference.html.
  10. Zhang, T.; Yi, J.; Yao, B.; Xu, Z.; Shrivastava, A.; Globersons, A.; Mackey, L.; Belgrave, D.; Fan, A.; Paquet, U.; Tomczak, J. M.; Zhang, C. (2024). NoMAD-Attention: Efficient LLM Inference on CPUs Through Multiply-add-free Attention. Advances in Neural Information Processing Systems 38: Annual Conference on Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15, 2024.
    http://papers.nips.cc/paper/_files/paper/2024/hash/ccda3c632cc8590ee60ca5ba226a4c30-Abstract-Conference.html.
  11. Zhou, Y.; Chen, Z.; Xu, Z.; Lin, V.; Chen, B.; Globersons, A.; Mackey, L.; Belgrave, D.; Fan, A.; Paquet, U.; Tomczak, J. M.; Zhang, C. (2024). SIRIUS : Contexual Sparisty with Correction for Efficient LLMs. Advances in Neural Information Processing Systems 38: Annual Conference on Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15, 2024.
    http://papers.nips.cc/paper/_files/paper/2024/hash/2ae6b2bdf3a179e3e24129e2c54bd871-Abstract-Conference.html.

Journal Article

  1. Wu, Y.; Guo, W.; Liu, Z.; Ji, H.; Xu, Z.; Zhang, D. (2025). How large language models encode theory-of-mind: a study on sparse parameter patterns. NPJ Artificial Intelligence. Nature.

workshop

  1. Zhao, W.; Shao, H.; Xu, Z.; Duan, S.; Zhang, D. (2024). Measuring Copyright Risks of Large Language Model via Partial Information Probing. CIKM workshop on Data-centric AI.