Svetlana Malinovskaya (smalinov)

Svetlana Malinovskaya

Professor

Charles V. Schaefer, Jr. School of Engineering and Science

Department of Physics

Education

  • PhD (1993) Novosibirsk State University and The Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences (Physics and Mathematics)

Research

Atomic, Molecular and Optical Physics
Stimulated Raman spectroscopy, CARS, STIRAP
X-ray and Auger spectroscopy
Frequency Comb spectroscopy
Molecular cooling
Quantum many-body physics with trapped Rydberg atoms
Coherence, entanglement and decoherence
Quantum control
Dynamical symmetry breaking; non-adiabatic effects
Dynamics of collisions
Photo-induced reactions in biomolecules

Institutional Service

  • Graduate Curriculum Committee Member
  • Member of the Faculty Senate Member

Professional Service

  • Advances in Quantum Chemistry Editorial Board Member
  • American Physical Society • Member-at-Large of the DAMOP Executive Committee
  • Annual Winter Colloquium on Physics of Quantum Electronics Organizer
  • National Science Foundation Referee, member of a Review Panel
  • Physical Review, Optics Letters, Frontiers of Physics Peer Reviewed Scientific Journals
  • Center for Quantum Science and Engineering at Stevens Leader of the Cluster on Quantum Sensing and Imaging

Honors and Awards

Alexander von Humboldt Research Fellowship 2023.
Helmholtz Institute Mainz Visiting Program Scholarship 2022-2023.
Teaching Faculty Award from the Student Government Association at Stevens Institute of Technology, May 2011.
Honor Award from the Society of Graduate Physics Students of Stevens Institute of Technology, May 2011.

Professional Societies

  • SPIE – Society of Photo-Optical Instrumentation Engineers Member
  • Optica – OPTICA (former Optical Society of America) Member
  • APS – American Physical Society Member
  • ACS – American Chemical Society Member

Grants, Contracts and Funds

-ONR STTR Award 2024-2025 with Rochester Scientific LLC; PI S. Rochester, Co-PI S. Malinovskaya. Title: Remote magnetometry with resonantly enhanced multiphoton ionization (REMPI) readout.
-ONR Award 2022-2025; PI S. Malinovskaya. Title: Broad frequency range chemical and biochemical material remote detection using quantum-enhanced FAST CARS.
-ONR Award 2020-2023; PI S. Malinovskaya. Title: Quantum-enhanced FAST CARS for remote detection using a multi-static platform.
- ONR Award 2017-2020; PI S. Malinovskaya. Title: Remote detection of chem/bio hazards via coherent anti-Stokes Raman spectroscopy.
- ONR Award 2016; PI S. Malinovskaya. Title: Remote detection of chem/bio hazards via coherent anti-Stokes Raman spectroscopy.
- Alexander von Humboldt Award 2014; Three-months research visit (sabbatical) of the University of Kassel, Germany.
- NSF Award 2012-2016; PI S. Malinovskaya. Title: Control of Ultracold Dynamics and Decoherence Using Optical Frequency Combs.
- NSF Award 2009-2012; PI S. Malinovskaya. Title: Ultrafast Control of Raman Transitions Using Frequency Combs:Prevention of Decoherence.
- DARPA Award 2009-2010; Title: Entanglement dynamics of qubit systems, Collaborative grant with Ting Yu, Norman Horing, Joe Eberly (University of Rochester) and Bela Hu (University of Maryland).
- NSF sponsored visits of Kavli Institute for Theoretical Physics (KITP) and Scientific Programs on i) Frontiers of Intense Laser Physics (July - Sept. 2014); ii) Fundamental Science and Applications of Ultra-Cold Polar Molecules, (March 2013); iii) Quantum Control (August 2009).

Patents and Inventions

S.A. Malinovskaya, V.S. Malinovsky, "CARS microscopy and spectroscopy using ultrafast chirped pulses," USP 7847933 (2010). Description: The invention is a method that uses ultrafast pulse shaping techniques that allow for selective excitation of molecules in a sample in order to generate a signal that can be processed to perform CARS microscopy or CARS spectroscopy of the sample. Two linearly chirped pulses in a Raman scheme provide selective excitation of only one target transition without disturbing any other transitions or molecules. Selectivity is guaranteed by the adiabaticity of the pulse excitation. The large bandwidth of the intense femtosecond pulse provides the flexibility necessary to manipulate by frequency components and to apply a time-dependent phase on the pulse. The importance of the method is in its unique ability to distinguish between molecules or molecular groups having very similar structural properties reflected in close vibrational frequencies, whose difference may be less than 3 cm-1.

Selected Publications

Book

  1. Malinovskaya, S.; Novikova, I. (2015). From atomic to mesoscale: The role of quantum coherence in systems of various complexities. From Atomic to Mesoscale: The Role of Quantum Coherence in Systems of Various Complexities (pp. 1-262).

Book Chapter

  1. Chathanathil, J.; Malinovskaya, S. (2024). Chirped pulse control of Raman coherence in atoms and molecules. Advances in Quantum Chemistry (pp. 225-289). Elsevier.
    http://dx.doi.org/10.1016/bs.aiq.2023.07.002.
  2. Ramaswamy, A.; Malinovskaya, S. (2022). Control with EIT: High Energy Charged Particle Detection. Topics in Applied Physics (pp. 363-392). Springer International Publishing.
    http://dx.doi.org/10.1007/978-3-030-93460-6_12.
  3. Ramaswamy, A.; Malinovskaya, S. (2022). Control with EIT: High Energy Charged Particle Detection. Topics in Applied Physics (vol. 144, pp. 363-392).
  4. Sola, I. R.; Chang, B. Y.; Malinovskaya, S.; Malinovsky, V. S. (2018). Quantum Control in Multilevel Systems. Advances In Atomic, Molecular, and Optical Physics (vol. 67, pp. 151--256). Academic Press.
  5. Malinovskaya, S. A.; Liu, G. (2018). Adiabatic Passage Control Methods for Ultracold Alkali Atoms and Molecules via Chirped Laser Pulses and Optical Frequency Combs. Advances in Quantum Chemistry. Advances in Quantum Chemistry (vol. 77, pp. 241--294). Uppsala, Sweden: Academic Press.
  6. Malinovskaya, S.; Liu, G. (2018). Adiabatic Passage Control Methods for Ultracold Alkali Atoms and Molecules via Chirped Laser Pulses and Optical Frequency Combs. Advances in Quantum Chemistry (vol. 77, pp. 241-294).
  7. Malinovskaya, S.; Collins, T.; Patel, V. (2012). Ultrafast Manipulation of Raman Transitions and Prevention of Decoherence Using Chirped Pulses and Optical Frequency Combs. Advances in Quantum Chemistry (vol. 64, pp. 211-258).
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84864298372&origin=inward.

Conference Proceeding

  1. Malinovsky, V. S.; Carrasco, S.; Goerz, M. H.; Malinovskaya, S.; Vuletic, V.; Schleich, W. P.; Shahriar, S. M.; Scheuer, J. (2024). Spin squeezing via rapid adiabatic passage between Dicke states. Quantum Sensing, Imaging, and Precision Metrology II. SPIE.
    http://dx.doi.org/10.1117/12.3012155.
  2. DeStefano, N.; Pegahan, S.; Novikova, I.; Mikhailov, E.; Aubin, S.; Averett, T.; Zhang, S.; Park, G.; Camsonne, A.; Ramaswamy, A.; Malinovskaya, S. (2023). Imaging Charged Particle Beams With Atomic Magnetometry. Morressier.
    http://dx.doi.org/10.26226/m.6466362c4d8a9d00129321e1.
  3. Chathanathil, J.; Ramaswamy, A.; Malinovskaya, S. (2023). Selective excitation for imaging via chirped fractional stimulated Raman adiabatic passage. Biophotonics Congress: Optics in the Life Sciences 2023 (OMA, NTM, BODA, OMP, BRAIN). Optica Publishing Group.
    http://dx.doi.org/10.1364/ntm.2023.ntu3c.3.
  4. Malinovskaya, S.; Ramaswamy, A. (2022). Transparency in a two-level system using state phase control. Frontiers in Optics + Laser Science 2022 (FIO, LS). Optica Publishing Group.
    http://dx.doi.org/10.1364/fio.2022.jtu4b.72.
  5. Chathanathil, J.; Malinovskaya, S. (2022). Chirped Pulse Control in CARS with Applications to Remote Detection. Frontiers in Optics+ Laser Science 2022 (FIO, LS). Frontiers in Optics and Laser Science Conference. Optica Publishing Group.
    https://opg.optica.org/abstract.cfm?URI=FiO-2022-FM4C.2.
  6. Ramaswamy, A.; Novikova, I.; Malinovskaya, S. (2022). Controlling optical response to charged particles in EIT media. 53rd Annual Meeting of the APS Division of Atomic, Molecular and Optical Physics. Bulletin of the American Physical Society 2022 (7 ed., vol. 67, pp. 402952). Washington DC: The American Physical Society.
  7. Chathanathil , J.; Narducci, F.; Malinovskaya, S. (2022). The detuning controlled maximum coherence via C-CARS. 53rd Annual Meeting of the APS Division of Atomic, Molecular and Optical Physics . Bulletin of the American Physical Society 2022 (7 ed., vol. 67, pp. 387770). Washington DC: The American Physical Society .
  8. Chathanathil, J.; Malinovskaya, S. (2022). Chirped Pulse Control in CARS with Applications to Remote Detection. Optics InfoBase Conference Papers.
  9. Chathanathil, J.; Liu, G.; Malinovskaya, S. (2022). Remote detection using maximal coherence control technique in coherent anti-Stokes Raman spectroscopy. Optics InfoBase Conference Papers.
  10. Malinovskaya, S.; Ramaswamy, A. (2022). Transparency in a two-level system using state phase control. Optics InfoBase Conference Papers.
  11. Pachniak, E.; Rostovtsev, Y. V.; Malinovskaya, S. (2019). Quantum Control of Entanglement Using Spin States in Rydberg Atoms. Rochester Conference on Coherence and Quantum Optics (CQO-11). OSA.
    http://dx.doi.org/10.1364/cqo.2019.th1a.3.
  12. Pachniak, E.; Rostovtsevy, Y. V.; Malinovskaya, S. (2019). Quantum control of entanglement using spin states in Rydberg Atoms© OSA 2019. Proceedings Rochester Conference on Coherence and Quantum Optics, CQO 2019.
  13. Pachniak, E.; Rostovtsev, Y. V.; Malinovskaya, S. (2019). Quantum control of entanglement using spin states in Rydberg atoms. Optics InfoBase Conference Papers (vol. Part F141-CQO 2019).
  14. Malinovsky, V. S.; Malinovskaya, S. A.; Chang, B. Y.; Sola, I. R.; Garraway, B. M. (2018). From Rabi oscillations to adiabatic passage in multi-level quantum systems with a train of weak pulses. Latin America Optics and Photonics Conference (pp. W4A--2). Optical Society of America (OSA).
  15. Malinovskaya, S. A.; Pachniak, E. (2018). Many-Body Physics with Spin States of Rydberg Atoms. 2018 IEEE Photonics Society Summer Topical Meeting Series (SUM) (pp. 221--221). IEEE.
  16. Malinovskaya, S. (2016). Enhanced contrast CARS for biochemical and environmental analysis. Optics InfoBase Conference Papers.
  17. Malinovskaya, S. (2011). Theory of molecular cooling using optical frequency combs in the presence of decoherence. Optics InfoBase Conference Papers.
  18. Malinovskaya, S. (2008). Optimal coherence using chirped pulse trains for enhanced imaging. Optics InfoBase Conference Papers.
  19. Malinovskaya, S. (2007). Chirped pulse adiabatic passage in CARS for imaging of biological structure and dynamics. AIP Conference Proceedings (2 ed., vol. 963, pp. 216-218).
  20. Malinovskaya, S. (2007). Chirped pulse adiabatic passage in CARS. Optics InfoBase Conference Papers.

Editorial Foreword to the Book

  1. Malinovskaya, S.; Novikova, I. (2015). Foreword. From Atomic to Mesoscale: The Role of Quantum Coherence in Systems of Various Complexities (pp. v-vi).

Journal Article

  1. Carrasco, S. C.; Goerz, M. H.; Malinovskaya, S.; Vuletić, V.; Schleich, W. P.; Malinovsky, V. S.. Dicke State Generation and Extreme Spin Squeezing via Rapid Adiabatic Passage. Physical Review Letters (15 ed., vol. 132). American Physical Society (APS).
    http://dx.doi.org/10.1103/physrevlett.132.153603.
  2. Chathanathil, J.; Liu, G.; Malinovskaya, S.. Semiclassical control theory of coherent anti-Stokes Raman scattering maximizing vibrational coherence for remote detection. Physical Review A (4 ed., vol. 104). American Physical Society (APS).
    http://dx.doi.org/10.1103/physreva.104.043701.
  3. Chathanathil, J.; Ramaswamy, A.; Malinovsky, V. S.; Budker, D.; Malinovskaya, S. (2023). Chirped fractional stimulated Raman adiabatic passage. Physical Review A (4 ed., vol. 108, pp. 043710). American Physical Society (APS).
    http://dx.doi.org/10.1103/physreva.108.043710.
  4. Chathanathil, J.; Budker, D.; Malinovskaya, S. (2023). Quantum control via chirped coherent anti-Stokes Raman spectroscopy. Quantum Science and Technology (4 ed., vol. 8, pp. 045005). IOP Publishing.
    http://dx.doi.org/10.1088/2058-9565/ace3ed.
  5. Ramaswamy, A.; Chathanathil, J.; Kanta, D.; Klinger, E.; Papoyan, A.; Shmavonyan, S.; Khanbekyan, A.; Wickenbrock, A.; Budker, D.; Malinovskaya, S. A. (2023). Mirrorless lasing: a theoretical perspective. Optical Memory and Neural Networks (3 ed., vol. 32 (2023), pp. S443-S466). Springer.
  6. Ramaswamy, A.; Chathanathil, J.; Kanta, D.; Klinger, E.; Papoyan, A.; Shmavonyan, S.; Wickenbrock, A.; Budker, D.; Malinovskaya, S. (2023). Mirrorless lasing: a theoretical perspective. ArXiv (vol. arXiv:2308.07969).
  7. Carrasco, S. C.; Goerz, M. H.; Malinovskaya, S.; Vuletic, V.; Schleich, W.; Malinovsky, V. S. (2023). Dicke State Generation and Extreme Spin Squeezing via Rapid Adiabatic Passage. ArXiv (quant-ph ed., vol. arXiv:2306.03190 ).
  8. Chathanathil, J.; Ramaswamy, A.; Malinovsky, V. S.; Budker, D.; Malinovskaya, S. A. (2023). Chirped Fractional Stimulated Raman Adiabatic Passage. ArXiv (quant-ph ed., vol. arXiv:2305.18652 ). Hoboken.
  9. Sola, I. R.; Chang, B. Y.; Malinovskaya, S.; Carrasco, S. C.; Malinovsky, V. S. (2022). Stimulated Raman adiabatic passage with trains of weak pulses* * This work is dedicated to Bruce Shore, a brilliant and inspiring physicist, a pioneer in coherent light-matter interaction theory, a mentor and a friend.. Journal of Physics B: Atomic, Molecular and Optical Physics (23 ed., vol. 55).
  10. Ramaswamy, A.; Latypov, A. F.; Malinovskaya, S. A. (2022). Generation of the GHZ and the W State in a Series of Rydberg Atoms Trapped in Optical Lattices. Advances in Theoretical & Computational Physics (3 ed., vol. 5, pp. 476-484). Opast Publishing Group.
    https://www.opastpublishers.com/open-access-articles/generation-of-the-ghz-and-the-w-state-in-a-series-of-rydberg-atoms-trapped-in-optical-lattices.pdf.
  11. Chathanathil, J.; Liu, G.; Malinovskaya, S. (2022). Remote detection using maximal coherence control technique in coherent anti-Stokes Raman spectroscopy. Optical sensors and Sensing Congress 2022 (AIS, LACSEA, Sensors, ES). Technical Digest Series (Optica Publishing Group) (vol. LM3B.5. (2022)). Optica.
  12. Malinovskaya, S. A. (2021). Many-body physics with spin states of trapped Rydberg atoms. Mid-Atlantic Section Meeting 2021. Bulletin of the American Physical Society 2021 (18 ed., vol. 66, pp. 000051). Washington DC: The American Physical Society.
  13. Malinovskaya, S. (2021). Laser cooling using adiabatic rapid passage. Frontiers of Physics (5 ed., vol. 16). Springer Science and Business Media LLC.
    http://dx.doi.org/10.1007/s11467-021-1071-z.
  14. Malinovskaya, S.; Chathanathil, J. (2021). A semi-classical control theory of Coherent Anti-Stokes Raman Scattering (CARS) maximizing vibrational coherence for remote detection. Physical Review A (vol. 104, pp. 043701). Washington DC: American Physical Society.
  15. Chathanathil, J.; Liu, G.; Malinovskaya, S. A. (2021). Semiclassical control theory of coherent anti-Stokes Raman scattering maximizing vibrational coherence for remote detection. Physical Review A (4 ed., vol. 104).
  16. Malinovskaya, S.; Ramaswamy, A.; Novikova, I. (2021). Developing a quantum control scheme for the detection of high energy charged particles using the strong non-linear optical response response of atomic media in EIT states. Bulletin of the American Physical Society. Washington DC: American Physical Society.
  17. Malinovskaya, S.; Chathanathil, J.; Liu, G. (2021). Effects of decoherence and propagation in remote detection of molecules using CARS. Bulletin of the American Physical Society 2021. Washington DC: American Physical Society.
  18. Pachniak, E.; Malinovskaya, S. (2021). Creation of quantum entangled states of Rydberg atoms via chirped adiabatic passage. Scientific Reports (1 ed., vol. 11).
  19. Malinovskaya, S. (2021). Laser cooling using adiabatic rapid passage. Frontiers of Physics (5 ed., vol. 16).
  20. Malinovskaya, S. (2021). Laser cooling using adiabatic rapid passage. Frontiers of Physics (5 ed., vol. 16, pp. 52601). Higher Education Press.
    https://www.researchgate.net/publication/351036569,%20%20https://doi.org/10.1007/s11467-021-1071-z.
  21. Chathanathil, J.; Liu, G.; Narducci, F.; Malinovskaya, S. (2020). A semi-classical theory of backscattering in Coherent anti-Stokes Raman Spectroscopy for remote detection. Bulletin of the American Physical Society. American Physical Society.
  22. Ramaswamy, A.; Malinovskaya, S.; Novikova, I. (2020). A model of electromagnetically induced transparency and high energy charged particles in atomic media. Bulletin of the American Physical Society. American Physical Society.
  23. Ramaswamy, A.; Malinovskaya, S. (2020). Femtosecond optical frequency combs and applications to quantum control of three-level atomic systems. Bulletin of the American Physical Society. American Physical Society.
  24. Pandya, N.; Liu, G.; Narducci, F.; Chathanathil, J.; Malinovskaya, S. (2020). Creation of the maximum coherence via adiabatic passage in the four-wave mixing process of coherent anti-Stokes Raman scattering. Chemical Physics Letters (vol. 738, pp. 136763). Elsevier BV.
    http://dx.doi.org/10.1016/j.cplett.2019.136763.
  25. Liu, G.; Narducci, F. A.; Malinovskaya, S. (2020). Limits to remote molecular detection via coherent anti-Stokes raman spectroscopy using a maximal coherence control technique. Journal of Modern Optics (1 ed., vol. 67, pp. 21-25).
  26. Liu, G.; Narducci, F. A.; Malinovskaya, S. (2020). Limits to remote molecular detection via coherent anti-Stokes Raman spectroscopy using a maximal coherence control technique. Journal of Modern Optics (1 ed., vol. 67, pp. 21-25). Taylor & Francis.
  27. Pandya, N.; Liu, G.; Narducci, F. A.; Chathanathil, J.; Malinovskaya, S. (2020). Creation of the maximum coherence via adiabatic passage in the four-wave mixing process of coherent anti-Stokes Raman scattering. Chemical Physics Letters (vol. 738).
  28. Pandya, N.; Liu, G.; Narducci, F. A.; Chathanathil, J.; Malinovskaya, S. (2020). Creation of the maximum coherence via adiabatic passage in the four-wave mixing process of coherent anti-Stokes Raman scattering. Chemical Physics Letters (vol. 738, pp. 136763). Amsterdam: Elsevier.
  29. Malinovskaya, S.; Pachniak, E. (2019). Generation of entanglement in spin states of Rydberg atoms by chirped optical pulses. Advanced Materials Letters (9 ed., vol. 10, pp. 619-621). International Association of Advanced Materials.
    http://dx.doi.org/10.5185/amlett.2019.9906.
  30. Malinovskaya, S. A.; Chathanathil, J.; Liu, G. (2019). The application of coherent anti-Stokes Raman spectroscopy for remote molecular detection. Bulletin of the American Physical Society (pp. V06. 00007). American Physical Society.
  31. Malinovskaya, S.; Pandya, N. (2019). Decoherence analysis in a super-effective two level CARS scheme. Bulletin of the American Physical Society (pp. V06. 00007). American Physical Society.
  32. Malinovskaya, S.; Pachniak, E. (2019). Quantum Control Methodology for Creation of GHZ and W states of Rydberg atoms. Bulletin of the American Physical Society (pp. H05. 00006). American Physical Society.
  33. Malinovskaya, S. A.; Pachniak , E. (2019). Generation of entanglement in spin states of Rydberg atoms by chirped optical pulses. Advanced Materials Letters (9 ed., vol. 10, pp. 619-621). VBRI Press .
  34. Malinovskaya, S. A.; Pachniak, E.; Rostovtsev, Y. V. (2019). Generation of entanglement in spin states of Rydberg Rb atoms by chirped optical pulses. arXiv preprint arXiv:1902.00584.
  35. Liu, G.; Narducci, F. A.; Malinovskaya, S. (2018). Limits to remote molecular detection via coherent anti-Stokes raman spectroscopy using a maximal coherence control technique. Journal of Modern Optics (pp. 1--5). Taylor and Francis.
    https://doi.org/10.1080/09500340.2018.1514084.
  36. Malinovskaya, S. A.; Liu, G. (2018). Creation of ultracold molecules within the lifetime scale by direct implementation of an optical frequency comb. Journal of Modern Optics (11 ed., vol. 65, pp. 1309--1317). Taylor and Francis.
  37. Malinovskaya, S. (2017). Design of many-body spin states of Rydberg atoms excited to highly tunable magnetic sublevels. Optics Letters (2 ed., vol. 42, pp. 314-317).
  38. Malinovskaya, S.; Liu, G. (2016). Harmonic spectral modulation of an optical frequency comb to control the ultracold molecules formation. Chemical Physics Letters (vol. 664, pp. 1-4).
  39. Liu, G.; Malinovskaya, S. (2015). Two-photon adiabatic passage in ultracold Rb interacting with a single nanosecond, chirped pulse. Journal of Physics B: Atomic, Molecular and Optical Physics (19 ed., vol. 48).
  40. Sukharev, M.; Malinovskaya, S. (2015). Collective effects in subwavelength hybrid systems: A numerical analysis. Molecular Physics (vol. 113, pp. 392-396).
  41. Kumar, P.; Malinovskaya, S.; Malinovsky, V. S. (2014). Optimal control of multilevel quantum systems in the field-interaction representation. Physical Review A - Atomic, Molecular, and Optical Physics (3 ed., vol. 90).
  42. Liu, G.; Zakharov, V.; Collins, T.; Gould, P.; Malinovskaya, S. (2014). Population inversion in hyperfine states of Rb with a single nanosecond chirped pulse in the framework of a four-level system. Physical Review A - Atomic, Molecular, and Optical Physics (4 ed., vol. 89).
  43. Kumar, P.; Malinovskaya, S.; Sola, I. R.; Malinovsky, V. S. (2014). Selective creation of maximum coherence in multi-level Λ system. Molecular Physics (3-4 ed., vol. 112, pp. 326-331).
  44. Kuznetsova, E.; Liu, G.; Malinovskaya, S. (2014). Adiabatic rapid passage two-photon excitation of a Rydberg atom. Physica Scripta (vol. T160).
  45. Malinovskaya, S.; Horton, S. L. (2013). Impact of decoherence on internal state cooling using optical frequency combs. Journal of the Optical Society of America B: Optical Physics (3 ed., vol. 30, pp. 482-488). Optical Society of America.
  46. Collins, T. A.; Malinovskaya, S. (2013). Robust control in ultracold alkali metals using a single linearly chirped pulse. Journal of Modern Optics (1 ed., vol. 60, pp. 28-35).
  47. Patel, V.; Malinovskaya, S. (2012). Realization of population inversion under nonadiabatic conditions induced by the coupling between vibrational modes via Raman fields. International Journal of Quantum Chemistry (24 ed., vol. 112, pp. 3739-3743).
  48. Sukharev, M.; Malinovskaya, S. (2012). Stimulated Raman adiabatic passage as a route to achieving optical control in plasmonics. Physical Review A - Atomic, Molecular, and Optical Physics (4 ed., vol. 86).
  49. Collins, T. A.; Malinovskaya, S. (2012). Manipulation of ultracold Rb atoms using a single linearly chirped laser pulse. Optics Letters (12 ed., vol. 37, pp. 2298-2300).
  50. Hawkins, P. E.; Malinovskaya, S.; Malinovsky, V. S. (2012). Ultrafast geometric control of a single qubit using chirped pulses. Physica Scripta (T147 ed.).
  51. Kumar, P.; Malinovskaya, S.; Malinovsky, V. S. (2011). Optimal control of population and coherence in three-level Λ systems. Journal of Physics B: Atomic, Molecular and Optical Physics (15 ed., vol. 44, pp. 154010).
  52. Patel, V.; Malinovskaya, S. (2011). Nonadiabatic effects induced by the coupling between vibrational modes via Raman fields. Physical Review A - Atomic, Molecular, and Optical Physics (1 ed., vol. 83).
  53. Malinovskaya, S.; Patel, V.; Collins, T. (2010). Internal state cooling with a femtosecond optical frequency comb. International Journal of Quantum Chemistry (15 ed., vol. 110, pp. 3080-3085).
  54. Malinovskaya, S.; Shi, W. (2010). Feshbach-to-ultracold molecular state Raman transitions via a femtosecond optical frequency comb. Journal of Modern Optics (19 ed., vol. 57, pp. 1871-1876).
  55. Kumar, P.; Malinovskaya, S. (2010). Quantum dynamics manipulation using optimal control theory in the presence of laser field noise. Journal of Modern Optics (14-15 ed., vol. 57, pp. 1243-1250).
  56. Shi, W.; Malinovskaya, S. (2010). Implementation of a single femtosecond optical frequency comb for rovibrational cooling. Physical Review A - Atomic, Molecular, and Optical Physics (1 ed., vol. 82).
  57. Patel, V.; Malinovsky, V. S.; Malinovskaya, S. (2010). Effects of phase and coupling between the vibrational modes on selective excitation in coherent anti-Stokes Raman scattering microscopy. Physical Review A - Atomic, Molecular, and Optical Physics (6 ed., vol. 81).
  58. Corn, B.; Malinovskaya, S. (2009). An Ab initio analysis of charge redistribution upon isomerization of retinal in rhodopsin and bacteriorhodopsin. International Journal of Quantum Chemistry (13 ed., vol. 109, pp. 3131-3141).
  59. Malinovskaya, S. (2009). Optimal coherence via adiabatic following. Optics Communications (17 ed., vol. 282, pp. 3527-3529).
  60. Malinovskaya, S. (2009). Robust control by two chirped pulse trains in the presence of decoherence. Journal of Modern Optics (6 ed., vol. 56, pp. 784-789).
  61. Malinovskaya, S.; S. Malinovsky, V. (2008). Optimal coherence via chirped pulse adiabatic passage in the presence of dephasing. Journal of Modern Optics (19-20 ed., vol. 55, pp. 3101-3108).
  62. Malinovskaya, S. (2008). Prevention of decoherence by two femtosecond chirped pulse trains. Optics Letters (19 ed., vol. 33, pp. 2245-2247).
  63. Malinovskaya, S. (2007). Chirped pulse control methods for imaging of biological structure and dynamics. International Journal of Quantum Chemistry (15 ed., vol. 107, pp. 3151-3158).
  64. Malinovskaya, S.; Malinovsky, V. S. (2007). Chirped-pulse adiabatic control in coherent anti-Stokes Raman scattering for imaging of biological structure and dynamics. Optics Letters (6 ed., vol. 32, pp. 707-709).
  65. Malinovskaya, S. (2006). Mode-selective excitation using ultrafast chirped laser pulses. Physical Review A - Atomic, Molecular, and Optical Physics (3 ed., vol. 73).
  66. Malinovskaya, S. (2005). Pulse function for control of the coherent excitation in stimulated raman spectroscopy. International Journal of Quantum Chemistry (3 ed., vol. 102, pp. 313-317).
  67. Malinovskaya, S.; Bucksbaum, P. H.; Berman, P. R. (2004). On the role of coupling in mode selective excitation using ultrafast pulse shaping in stimulated Raman spectroscopy. Journal of Chemical Physics (8 ed., vol. 121, pp. 3434-3437).
  68. Malinovskaya, S.; Bucksbaum, P. H.; Berman, P. R. (2004). Theory of selective excitation in stimulated Raman scattering. Physical Review A - Atomic, Molecular, and Optical Physics (1 ed., vol. 69, pp. 5).
  69. Kollmar, M.; Steinhagen, H.; Janssen, J. P.; Goldfuss, B.; Malinovskaya, S.; Vázquez, J.; Rominger, F.; Helmchen, G. (2002). (η3-phenylallyl)(phosphanyloxazoline)palladium complexes: X-ray crystallographic studies, NMR investigations, and Ab initio/DFT calculations. Chemistry - A European Journal (14 ed., vol. 8, pp. 3103-3114).
  70. Malinovskaya, S.; Cabrera-Trujillo, R.; Sabin, J. R.; Deumens, E.; Öhrn, Y. (2002). Dynamics of proton-acetylene collisions at 30 eV. Journal of Chemical Physics (3 ed., vol. 117, pp. 1103-1108).
  71. Malinovskaya, S.; Cederbaum, L. S. (2000). Role of coherence and time in the mechanism of dynamical symmetry breaking and localization. International Journal of Quantum Chemistry (4-5 ed., vol. 80, pp. 950-957).
  72. Malinovskaya, S.; Cederbaum, L. S. (2000). Violation of electronic optical selection rules in x-ray emission by nuclear dynamics: Time-dependent formulation. Physical Review A - Atomic, Molecular, and Optical Physics (4 ed., vol. 61, pp. 427061-4270616).
  73. Malinovskaya, S.; Cederbaum, L. S. (2000). Violation of electronic optical selection rules in x-ray emission by nuclear dynamics: Time-dependent formulation. Physical Review A - Atomic, Molecular, and Optical Physics (4 ed., vol. 61, pp. 16).
  74. Malinovskaya, S.; Schastnev, P. V.; Ikorskii, V. N. (1996). Magnetic susceptibility and parameters of exchange interactions between octahedral Co(II) complexes and nitroxyl imidazoline radical. Chemical Physics Reports (8 ed., vol. 15, pp. 1171-1179).
  75. Malinovskaya, S.; Musin, R. N.; Schastnev, P. V. (1995). Analytical approximation of the conformational dependence of the exchange interaction parameters for axially coordinated Cu(II) complexes with nitroxides. Journal of Structural Chemistry (1 ed., vol. 36, pp. 23-28).
  76. Malinovskaya, S.; Schastnev, P. V.; Musin, R. N.; Ikorsky, V. N. (1993). Exchange parameters of five-spin clusters of Cu(II) coordination compounds with imidazoline nitroxide radicals. Journal of Structural Chemistry (3 ed., vol. 34, pp. 398-401).
  77. Malinovskaya, S.; Schastnev, P. V. (1993). Method and program for magnetic susceptibility calculation of a system of clusters composed of exchange-interacting paramagnetic species including the anisotropy of g-factor and zero-field splittings. Journal of Structural Chemistry (3 ed., vol. 34, pp. 394-397).

Technical Report

  1. Malinovskaya, S. N. (2023). Quantum-Enhanced FAST CARS for Remote Detection Using a Multi-Static Platform.

posted-content

  1. DeStefano, N.; Pegahan, S.; Novikova, I.; Mikhailov, E.; Aubin, S.; Averett, T.; Zhang, S.; Park, G.; Camsonne, A.; Ramaswamy, A.; Malinovskaya, S. (2023). Imaging Charged Particle Beams With Atomic Magnetometry. Morressier.
    http://dx.doi.org/10.26226/m.6466362c4d8a9d00129321e1.