Samantha Kleinberg
Professor
Charles V. Schaefer, Jr. School of Engineering and Science
Department of Computer Science
Education
- PhD (2010) New York University (Computer Science)
Research
Causality
Health Informatics
Artificial intelligence + cognition
Health Informatics
Artificial intelligence + cognition
Professional Service
- NSF NSF Review Panel
- Conference on Health, Inference, and Learning Track chair, CHIL
- KDD Causality workshop, IJCAI, JDST, CogSci Conference and journal reviewing, conference program committee
- Chair, Heuristics and Causality in the Sciences conference
- NSF NSF review panel
- University of California, MRPI Grant reviewer
Professional Societies
- ASN – American Society for Nutrition Member
Selected Publications
Abstract
- M, M.; Marsh, J. K.; Kleinberg, S. (2019). The Role of Causal Information and Perceived Knowledge in Decision-Making. Cognitive Science Society Annual Meeting.
Book
- Kleinberg, S.; Kleinberg, S. (2019). Time and Causality across the Sciences. Cambridge University Press.
Book Chapter
Conference Proceeding
- Toye, A.; Gomez, L.; Kleinberg, S. (2024). Simulation of Health Time Series with Nonstationarity. Conference on Health, Inference, and Learning (CHIL).
- Kleinberg, S.; Korshakova, E.; Marsh, J. K. (2023). How Beliefs Influence Perceptions of Choices. CogSci. Proceedings of the Cognitive Science Society.
- Korshakova, E.; Marsh, J. K.; Kleinberg, S. (2023). Quantifying the Utility of Complexity and Feedback Loops in Causal Models for Decision Making. CogSci. Proceedings of the Cognitive Science Society.
- Gomez, L. A.; Toye, A.; Hum, R. S.; Kleinberg, S. (2022). Simulating Health Time Series by Data Augmentation. Black in AI NeurIPS Workshop.
- Kleinberg, S.; Alay, E.; Marsh, J. K. (2022). Absence Makes the Trust in Causal Models Grow Stronger. Proceedings of the 44th Annual Meeting of the Cognitive Science Society (CogSci).
- Marsh, J. K.; Coachys, C.; Kleinberg, S. (2022). The Compelling Complexity of Conspiracy Theories. Proceedings of the 44th Annual Meeting of the Cognitive Science Society (CogSci).
- Lu, C.; Reddy, C. K.; Chakraborty, P.; Kleinberg, S.; Ning, Y. (2021). Collaborative Graph Learning with Auxiliary Text for Temporal Event Prediction in Healthcare. IJCAI.
- Mirtchouk, M.; Srikishan, B.; Kleinberg, S. (2021). Hierarchical Information Criterion for Variable Abstraction. Machine Learning for Healthcare.
- Mirtchouk, M.; Kleinberg, S. (2021). Detecting Granular Eating Behaviors From Body-worn Audio and Motion Sensors. 2021 IEEE EMBS International Conference on Biomedical and Health Informatics (BHI) (pp. 1--4).
- Kleinberg, S.; Marsh, J. K. (2021). It’s Complicated: Improving Decisions on Causally Complex Topics. CogSci.
- Hameed, H.; Kleinberg, S. (2020). Comparing Machine Learning Techniques for Blood Glucose Forecasting Using Free-living and Patient Generated Data. Machine Learning for Healthcare.
- Hameed, H.; Kleinberg, S. (2020). Investigating potentials and pitfalls of knowledge distillation across datasets for blood glucose forecasting. Proceedings of the 5th Annual Workshop on Knowledge Discovery in Healthcare Data.
- Kleinberg, S.; Marsh, J. K. (2020). Tell me something I don't know: How perceived knowledge influences the use of information during decision making. Proceedings of the 42nd Annual Meeting of the Cognitive Science Society (CogSci).
- Zheng, M.; Kleinberg, S. (2019). Using Domain Knowledge to Overcome Latent Variables in Causal Inference from Time Series. Machine Learning for Healthcare.
- Yavuz, T. T.; Claassen, J.; Kleinberg, S. (2019). Lagged Correlations among Physiological Variables as Indicators of Consciousness in Stroke Patients. AMIA Annual Symposium Proceedings. Washington D.C..
- Mirtchouk, M.; McGuire, D. L.; Deierlein, A. L.; Kleinberg, S. (2019). Automated Estimation of Food Type from Body-worn Audio and Motion Sensors in Free-Living Environments. Machine Learning for Healthcare.
Journal Article
- Thomas, D. M.; Knight, R.; Gilbert, J. A.; Cornelis, M. C.; Gantz, M. G.; Burdekin, K.; Cummiskey, K.; Sumner SCJ; Pathmasiri, W.; Sazonov, E.; Gabriel, K. P.; Dooley, E. E.; Green, M. A.; Pfluger, A.; Kleinberg, S. (2024). Transforming Big Data into AI-ready data for nutrition and obesity research.. Obesity (Silver Spring, Md.) (5 ed., vol. 32, pp. 857-870).
- Popp, C. J.; Wang, C.; Hoover, A.; Gomez, L. A.; Curran, M.; St-Jules, D. E.; Barua, S.; Sevick, M. A.; Kleinberg, S. (2024). Objective Determination of Eating Occasion Timing: Combining Self-Report, Wrist Motion, and Continuous Glucose Monitoring to Detect Eating Occasions in Adults With Prediabetes and Obesity.. Journal of diabetes science and technology (2 ed., vol. 18, pp. 266-272).
- Kleinberg, S.; Marsh, J. K. (2023). Less is more: information needs, information wants, and what makes causal models useful. Cognitive Research: Principles and Implications (vol. 8).
- Gomez, L. A.; Toye, A. A.; Hum, R. S.; Kleinberg, S. (2023). Simulating Realistic Continuous Glucose Monitor Time Series By Data Augmentation.. Journal of diabetes science and technology (pp. 19322968231181138).
- Gomez, L. A.; Shen, Q.; Doyle, K.; Vrosgou, A.; Velazquez, A.; Megjhani, M.; Ghoshal, S.; Roh, D.; Agarwal, S.; Park, S.; Claassen, J.; Kleinberg, S. (2023). Classification of Level of Consciousness in a Neurological ICU Using Physiological Data.. Neurocritical care (1 ed., vol. 38, pp. 118-128).
- Huang, J.; Yeung, A.; Armstrong, D.; Battarbee, A.; Cuadros, J.; Espinoza, J.; Kleinberg, S.; Mathioudakis, N.; Swerdlow, M.; Klonoff, D. (2023). Artificial Intelligence for Predicting and Diagnosing Complications of Diabetes. Journal of Diabetes Science and Technology (1 ed., vol. 17, pp. 224-238).
- Thomas, D. M.; Kleinberg, S.; Brown, A. W.; Crow, M.; Bastian, N. D.; Reisweber, N.; Lasater, R.; Kendall, T.; Shafto, P.; Blaine, R.; Smith, S.; Ruiz, D.; Morrell, C.; Clark, N. (2022). Machine learning modeling practices to support the principles of AI and ethics in nutrition research.. Nutrition & diabetes (1 ed., vol. 12, pp. 48).
- Korshakova, E.; Marsh, J. K.; Kleinberg, S. (2022). Health Information Sourcing and Health Knowledge Quality: Repeated Cross-sectional Survey.. JMIR formative research (9 ed., vol. 6, pp. e39274).
- Zhang, P.; Fonnesbeck, C.; Schmidt, D.; White, J.; Kleinberg, S.; Mulvaney, S. (2022). Understanding Barriers to Self-Management Using Machine Learning and Momentary Assessment in Youth with Diabetes: An Observational Study. JMIR mHealth and uHealth (3 ed., vol. 10).
- Zheng, M.; Marsh, J. K.; Nickerson, J.; Kleinberg, S. (2020). How causal information affects decisions. Cognitive Research: Principles and Implications (1 ed., vol. 5).
- Zheng, M.; Marsh, J. K.; Nickerson, J.; Kleinberg, S. (2020). How causal information affects decisions.. Cognitive research: principles and implications (1 ed., vol. 5, pp. 6).
- Zheng, M.; Ni, B.; Kleinberg, S. (2019). Automated Meal Detection from CGM Data Through Simulation and Explanation. JAMIA (12 ed., vol. 26, pp. 1592--1599).
- Zheng, M.; Claassen, J.; Kleinberg, S. (2018). Automated Identification of Causal Moderators in Time-Series Data.. Proceedings of machine learning research (vol. 92, pp. 4-22).
Magazine/Trade Publication
- Kleinberg, S. (2024). Americans are obsessed with health and fitness tracking. It’s time for a data diet. STAT.
https://www.statnews.com/2024/01/08/fitness-trackers-health-sleep-data/.