Pinar Akcora (pakcora)

Pinar Akcora

Associate Professor

Charles V. Schaefer, Jr. School of Engineering and Science

Department of Chemical Engineering and Materials Science

McLean Hall 415
(201) 216-8306

Education

  • PhD (2005) University of Maryland-College Park (Chemical Engineering)

Research

Synthesis and characterization of polymeric nanohybrids; self-assembly of polymer-grafted nanoparticles; mechanical and structural relationships of ordered-disordered systems; developing new strategies for the self-assembly of nanoparticles; polymer-grafted nanoparticles in ionic liquids for energy applications; mechanically adaptive composite membranes for large shear and high temperature applications; multifunctional polymer composites for enhanced conductivity and reinforcement; protein-polymer functionalized surfaces for bioapplications.

Institutional Service

  • CEMS Undergraduate Curriculum Committee (UCC) Member Member
  • CEMS Undergraduate Ambassador Member
  • CEMS Research Committee Chair Chair
  • Nanotechnology Program Coordinator Chair
  • Institute Curriculum Committee (ICC) Member
  • Academic Planning and Resources Committee (APAR) Member
  • CEMS Faculty Hiring Committee 2021-23 Member
  • SES Strategic Planning Committee 2022-2023 Member
  • Search Committee for the Vice Provost for Research and Innovation (VPRI), Spring 2022-Summer 2022 Member
  • Faculty Advisory Council for the Dean of Engineering Member
  • ICC Member
  • SES Faculty Advisory Council (FAC) 2022 Member
  • Review Committee for the SES Dean's Appointment Member
  • Search Committee for the new SES Associate Dean for Undergraduate Studies Program 2022 Member
  • Undergraduate Curriculum Committee (UCC) Chair
  • Undergraduate Curriculum Committee Chair
  • Institute Curriculum Committee (ICC) Member
  • Academic Planning and Resources Committee (APAR) Member
  • Stevens 150th Anniversary Academic Symposium Committee Member

Professional Service

  • Journal of Polymer Science Editorial Advisory Board Member
  • Organization Co-organizer of 17th Northeast Complex Fluids and Soft Matter Workshop at Stevens
  • APS Task Force / Poster Sessions Committee
  • American Physical Society (APS) - Division of Polymer Physics (DPOLY) 2021 APS March Meeting Program Chair

Appointments

Associate Prof. - Stevens Institute of Technology, Chemical Engineering & Materials Science (2016-)
Assistant Prof. - Stevens Institute of Technology, Chemical Engineering & Materials Science (Aug 2010-March 2016)
Assistant Prof. - U Missouri-Columbia, Chemical Engineering (Nov 2008- Aug 2010)

Honors and Awards

NSF CAREER Award, DMR-Polymers (2010 recipient)
Stevens Institute of Technology Research Recognition Award, October 2010
Research Board Award, University of Missouri (2009)

Professional Societies

  • AICHE – American Institute of Chemical Engineers Member
  • APS – American Physical Society Member
  • NSSA – Neutron Scattering Society of the America Member

Grants, Contracts and Funds


NSF DMR-Polymers, "Directed Ionic Transport in Poly(Ionic Liquid)-Grafted Nanoparticles in Polarizable Media" (2021), PI. Amount: $424,000.
NSF REU/RET Site grant on “Interdisciplinary Research Experience in Sustainable Energy and Bioengineering” (2021), PI. Amount: $375,000.
NSF-CMMI, Supplemental Grant, Machine Learning for Polymer Nanocomposites using Force-Field Agnostic Molecular Dynamics Descriptors (2020), PI
NSF DMR-Polymers, Ionic Transport in Ion Containing Copolymer-Grafted Nanoparticle Structures (2018), PI
NSF-CMMI-MEP, Collaborative Research: Chemical and Dynamic Heterogeneities in Interfaces for Adaptive Polymer Nanocomposites (2018), PI
NSF-CMMI-MEP, Unusual Temperature Dependent Behavior of Polymer Nanocomposites (2015), PI
ACS PRF New Directions Grant, Flow-induced Organization of Bimodal-Sized Particles in Drying Polymer Droplets (2014), PI
NSF MRI: Acquisition of a High- Pressure Freezing System for Cryo-Electron Microscopy (2014), co-PI
NSF DMR-Polymers, CAREER: Multi-functional Particle Assemblies in Polymer Nanocomposites (2010)
Stevens-CHI Healthcare Scholars (2016), PI
Stevens Ignition Grant Initiative, Designing Reversibly Stiffening Multifunctional Polymer Hybrids (2017), PI
University of Missouri (MU) Research Board Grant (2009), PI

Patents and Inventions

US2010/0303874 A1, Publication date: Dec. 2, 2010

Selected Publications

Conference Proceeding

  1. Muisener, P. A.; Akcora, P.. A New Mentoring and Undergraduate Research Experience Model between REUs and RETs at the Stevens REU/RET Site Program on Sustainable Energy and Bioengineering.
    file:///Users/pinarakcora/Downloads/board-200-a-new-mentoring-and-undergraduate-research-experience-model-between-reus-and-rets-at-the-stevens-reu-ret-site-program-on-sustainable-energy-and-bioengineering.pdf.

Journal Article

  1. Patil, S.; Mbonu, C.; Cheng, S.; Akcora, P. (2024). Dynamics of poly(methyl acrylate)/poly(methyl methacrylate)-grafted-Fe3O4 nanocomposites. Soft Matter.
  2. Mbonu, C.; Osti, N. C.; Wu, D.; Akcora, P. (2024). Quasi-Elastic Neutron Scattering Study on Dynamically Asymmetric Polymer Blends. Journal of Polymer Science.
    https://onlinelibrary.wiley.com/doi/10.1002/pol.20240161.
  3. Li, R.; Bulucu, D.; Chou, T.; Akcora, P. (2024). Enhanced Ion Conductivity in a Poly(ionic liquid)-Grafted Nanoparticle-Based Single-Ion Conductor. Macromolecules (8 ed., vol. 57, pp. 3807-3815). ACS.
    https://pubs.acs.org/doi/10.1021/acs.macromol.3c02623.
  4. Feng, Y.; Li, R.; Mbonu, C.; Akcora, P. (2023). Effect of Oligomer Addition on Tube Dilation in Polymer Nanocomposite Melts. Macromolecular Rapid Communications.
    https://doi-org.stevens.idm.oclc.org/10.1002/marc.202300620.
  5. Ge, Y.; Akcora, P.. Alignment Assisted Networks of Polyelectrolyte-Grafted Cellulose Nanocrystals. ACS Applied Engineering Materials (10 ed., vol. 1, pp. 2599-2605).
    https://pubs.acs.org/doi/full/10.1021/acsaenm.3c00378.
  6. Li, R.; Feng, Y.; Akcora, P. N.. Examining Ionicity and Conductivity in Poly(methyl methacrylate) Containing Imidazolium-Based Ionic Liquids. Journal of Molecular Liquids (121897 ed., vol. 382).
  7. Wu, D.; Narayanan, S.; Li, R.; Feng, Y.; Akcora, P.. Effect of Dynamically Heterogeneous Interphases on Particle Dynamics of Polymer Nanocomposites. Soft Matter (15 ed., vol. 19, pp. 2764-2770).
  8. Feng, Y.; Li, R.; Wu, D.; Akcora, P. (2022). Rheological Properties of Crosslinked Unentangled and Entangled Poly(methyl acrylate) Nanocomposite Networks. Polymer (125150 ed., vol. 255).
  9. Li, R.; Han, Y.; Akcora, P. (2022). Ion Channels in Sulfonated Copolymer-Grafted Nanoparticles in Ionic Liquids. Soft Matter (29 ed., vol. 18, pp. 5402-5409).
  10. Liu, S.; Li, R.; Tyagi, M.; Akcora, P. (2022). Confinement Effects in Dynamics of Ionic Liquids with Polymer-Grafted Nanoparticles. ChemPhysChem (202200210 ed.).
  11. Wu, D.; Ge, Y.; Li, R.; Feng, Y.; Akcora, P. (2022). Thermally Activated Shear Stiffening in Polymer-Grafted Nanoparticle Composites for High-Temperature Adhesives. ACS Applied Polymer Materials (4 ed., vol. 4, pp. 2819 - 2827).
    https://ezproxy.stevens.edu:2245/doi/pdf/10.1021/acsapm.2c00097.
  12. Wu, D.; Feng, Y.; Li, R.; Ozisik, R.; Akcora, P. (2021). Entanglement Density and Local Viscosity in Rigid Interfacial Layers of Polymer Nanocomposites. Journal of Applied Physics (6 ed., vol. 130 , pp. 064701). Hoboken: IAP.
  13. Liu, S.; Wu, D.; Akcora, P. (2021). Ion-Containing Polymer-Grafted Nanoparticles in Ionic Liquids: Implications for Polymer Electrolyte Membranes. ACS Applied Nano Materials (8 ed., vol. 4, pp. 8108). Hoboken: ACS.
    https://doi.org/10.1021/acsanm.1c01369.
  14. Gong, C.; Weiblen, D.; Akcora, P.; Ozisik, R. (2021). Stability of Particle Dispersion and Heterogeneous Interfacial Layers in Polymer Nanocomposites. Polymer (vol. 226, pp. 123813). Elsevier.
    https://doi.org/10.1016/j.polymer.2021.123813.
  15. Wu, D.; Ozisik, R.; Akcora, P. (2020). Local Viscosity of Interfacial Layers in Polymer Nanocomposites Measured by Magnetic Heating . ACS Applied Polymer Materials (12 ed., vol. 2, pp. 5542-5549).
    https://doi.org/10.1021/acsapm.0c00889.
  16. Liu, S.; Akcora, P.; Tyagi, M. (2020). Polymer-Coupled Local Dynamics Enhances Conductivity of Ionic Liquids. Macromolecules (15 ed., vol. 53, pp. 6538-6546). ACS.
    https://doi.org/10.1021/acs.macromol.0c01434.
  17. Liu, S.; Walton, M.; Tarakina, N. V.; Akcora, P. (2020). Solvation in Ionic Liquids with Polymer-Grafted Nanoparticles. Journal of Physical Chemistry B (23 ed., vol. 124, pp. 4843-4850). ACS.
  18. Zhang, C.; Padmanabhan, V.; Akcora, P. (2019). Solution Rheology of Poly(acrylic acid)-Grafted Silica Nanoparticles. Macromolecules (24 ed., vol. 52, pp. 9594-9603). ACS.
  19. Yang, S.; Akcora, P. (2019). Deformation of Chemically Heterogeneous Interfacial Layers of Polymer Nanocomposites. ACS Macro Letters (12 ed., vol. 8, pp. 1635-1641). ACS.
  20. Peng, W.; Ranganathan, R.; Keblinski, P.; Akcora, P.; Ozisik, R. (2019). Viscoelastic and Dynamic Properties of Polymer Grafted Nanocomposites with High Glass Transition Temperature Graft Chains. Journal of Applied Physics (19 ed., vol. 126, pp. Article number 195102). AIP Publishing.
  21. Liu, S.; Liedel, C.; Tarakina, N. V.; Osti, N. C.; Akcora, P. (2019). Dynamics of Ionic Liquids in the Presence of Polymer-Grafted Nanoparticles. Nanoscale (42 ed., vol. 11, pp. 19832-19841). Royal Society of Chemistry.
  22. Yang, S.; Hassan, M.; Akcora, P. (2019). Role of adsorbed chain rigidity in reinforcement of polymer nanocomposites. Journal of Polymer Science, Part B: Polymer Physics (1 ed., vol. 57, pp. 9-14). Hoboken.

Courses

CHE 332 Separation Operations
CHE 560 Fundamentals of Polymer Science
NANO 525 Techniques of Surface and Nanostructure Characterization